
Machine learning-based prediction of bushing dimensions, surface 
roughness and induced temperature during friction drilling of pre-heated 
A356 aluminum alloy

Mahmoud Khedr a,b,* , Ahmed Abdalkareem a, Amr Monier a,c, Rasha Afify a,  
Tamer S. Mahmoud a, Antti Järvenpää d
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A B S T R A C T

This study explores the application of machine learning algorithms, specifically Random Forest Regressor (RFR) 
and Gradient Boosting Regressor (GBR), to predict key outcomes of the friction drilling of A356 aluminum alloy. 
Optimizing process parameters such as rotational speed (RS), feed rate (FR), and preheat temperature (PH) is 
critical to achieve high-quality bushings during friction drilling. The study focused on predicting bush height 
(ha), thickness (t), surface roughness (Ra), and the induced temperature at workpiece/drilling-tool interface (T) 
through a dataset consisting of 27 experiments. The results showed that RS and PH had a significant influence on 
ha and T, with higher values of both parameters leading to increased bush height and induced temperature. 
Nevertheless, FR demonstrated a weaker effect on these responses but had a more pronounced impact on t and 
Ra. Feature importance analysis revealed that RS and PH were the most critical parameters for optimizing the 
friction drilling process, while FR had a lower effect. Additionally, the GBR model outperformed the RFR model 
in predicting ha, t, and Ra, providing more accurate results for these dimensions. Whereas the RFR exhibited a 
better behavior in predicting T, demonstrating the machine learning potential to enhance precision of the formed 
bushings.

1. Introduction

Friction drilling, also known as form or thermal drilling, is a non- 
conventional method of creating bushings and holes in thin-walled 
materials such as aluminum alloys [1,2]. The process employs a 
rotating conical or hexagonal tool to generate heat through friction, 
softening the material and displacing it to form the desired hole [3,4]. 
Unlike conventional drilling, friction drilling offers benefits such as 
bushing formation, which increases material strength and offers better 
load-bearing capacity, making it widely used in aerospace, and auto-
motive industries [5,6].

The dimensions and quality of the formed bushings are intensively 
affected by the friction drilling parameters such as the drilling tool 
rotational speed and feed rate [7,8]. Generally, rises in the rotational 

speed and reductions in the feed rate led to a better surface roughness 
and a longer bushing height [9]. However, brittle materials in the as-cast 
condition are rarely investigated through friction drilling processing to 
avoid petal formation in the formed bushings, such as A356 aluminum 
alloy [10–12].

A356 aluminum alloy is commonly used in marine and automotive 
applications for its excellent castability, mechanical strength, and 
corrosion resistance [13]. Furthermore, A356 is utilized in industrial 
applications requiring lightweight, such as structural housings, and 
frames, as well as cast engine blocks, cylinder heads, and pistons due to 
its ability to withstand high temperatures and pressures [14]. Friction 
drilling is widely applied to thin housings and frames to provide extra 
bushing space sufficient for clamping purposes. However, achieving 
optimal surface quality and bushing formation during friction drilling of 
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as-cast A356 Al-alloy is difficult due to its brittleness [15]. Previous 
studies have demonstrated that carrying out preheating (prior to friction 
drilling) significantly enhances the quality and dimensions of drilled 
bushing [16,17]. Therefore, this study investigates the effect of pre-
heating of as-cast A356 Al-alloy on the characteristics of the formed 
bushings at different rotational speeds and feed rates.

Optimizing the friction drilling parameters of A356 Al-alloy is crucial 
for improving the efficiency and quality of the formed bushings [18]. 
This can be achieved via advanced tools such as machine learning (ML) 
algorithms [19,20]. ML techniques could identify optimal material 
compositions and processing conditions corresponding to the best per-
formance [21,22]. In industrial settings, optimizing friction drilling 
parameters can achieve desired outcomes through empirical methods 
and trial-and-error, which are resource-intensive and time-consuming 
[23]. With the advent of ML, predictive models have shown promise in 
enhancing process understanding and optimizing outcomes in complex 
manufacturing processes [24]. ML models, particularly Random Forests, 
have demonstrated robustness and adaptability in applications requiring 
non-linear modeling, high-dimensional data analysis, and feature 
interpretability [25]. However, limited research has been conducted on 
using ML to optimize friction drilling parameters [26], particularly for 
preheated A356 aluminum alloy.

This study addresses a critical research gap by investigating how 
variations in rotational speed, feed rate, and preheating influence key 
friction drilling outcomes. While prior studies have relied on empirical 
methods for process optimization, these approaches are often resource- 
intensive and time-consuming. ML approaches, such as Random Forest 
Regressor (RFR) and Gradient Boosting Regressor (GBR), offer a prom-
ising alternative by enabling data-driven predictions to optimize process 
parameters efficiently. Thus, the present study explores the application 
of RFR and GBR models to predict friction drilling outcomes in A356 
aluminum alloy. The study aims to predict four key outcomes (bush 
height, bush thickness, induced temperature during friction drilling 
process, and surface roughness) based on tool rotational speed, feed 
rate, and specimen’ preheat temperature. The significance of this 
research lies in its potential to enhance process efficiency and reduce 
trial-and-error in friction drilling applications. The main objective of the 
study is to develop ML-based predictive models, seeking to contribute to 
the field of data-driven manufacturing, enabling more efficient process 
control and quality assurance in friction drilling applications.

2. Experimental setup and methodology

2.1. Materials and casting procedures

Table 1 shows the chemical composition of the investigated material 
which is A356 aluminum alloy. The material was supplied at the shape 
of ingots by the EGYPTALUM company in Egypt. The ingots were melted 
in an induction furnace, then degassed by Argon gas, followed by 
pouring in C-steel rectangular molds. Subsequently, after solidification, 
the rectangular mold was cut into squared sheets with dimensions of 
50 × 50 × 3 mm3.

2.2. Friction drilling processing

The friction drilling experiments were conducted on a CNC milling 
machine equipped with a conical friction drilling tool. Fig. 1.a displays a 
schematic drawing of the friction drilling tool, depicting the main re-
gions of the tool as well as the main dimensions. Fig. 1.b shows the 
holding fixture of the specimen, it has a grooved slot with similar 

dimensions as the workpiece to allow smooth sliding of the preheated 
specimens, whereas two grasping pins are designed to prevent the 
specimen from movements during the friction drilling processing. Fig. 1. 
c depicts a schematic drawing of the tool penetration through the 
workpiece. Fig. 1.d shows the geometry of the formed bushing after 
finishing the friction drilling process, displaying the diameter and height 
of the formed bushing.

During friction drilling parameters such as rotational speed (RS), and 
feed rate (FR) were manipulated with operating values as listed in 
Table 2. Furthermore, the preheating of the specimens implied 100, 150 
and 200 ◦C.

2.3. Bushing dimensions, surface roughness, and temperature 
measurements

The quality of the friction drilled bushes was evaluated according to 
the values of the bushing height (ha), which represents the height of the 
extruded material around the drilled hole. and bushing thickness (t), 
which represents the thickness of the bush formed during the drilling 
processes.

Surface roughness of the bushings (Ra), which is critical to the 
quality and functionality of the drilled hole, was measured along the 
internal drilled hole surface via a Mitutoyo SJ-310 surface roughness 
tester. The average of five readings was recorded. Whereas the peak 
temperature (T) observed at the tool-workpiece interface during friction 
drilling was recorded via thermal imager (FLUKE Ti32) infrared camera.

2.4. Data setting and preprocessing

The dataset used in this study consists of 27 friction drilling experi-
ments on the A356 aluminum alloy, where each experiment records the 
process parameters and corresponding outcomes. The input parameters 
imply RS, which was set at levels of 2000, 3000, and 4000 rpm, FR, 
which was set at levels of 40, 60, and 80 mm/min, and the workpiece 
preheat temperature (PH), whereas the preheating was carried out at 
100, 150, and 200 ◦C. The values of input parameters were chosen based 
on their proven effectiveness in reducing cracks and improving bushing 
quality in similar aluminum alloys [10,27,28]. Preheating temperatures 
(100–200 ◦C) were derived from studies showing the beneficial effects 
of moderate preheating on material ductility and deformation [29]. The 
output variables imply ha, t, Ra, and T.

Given the small size of the dataset, preprocessing steps were minimal 
but crucial to ensure model reliability. Missing values were checked, 
though none were found, and all variables were standardized where 
necessary to eliminate biases related to variable scale. The dataset was 
then split into training (80 %) and testing (20 %) sets to evaluate model 
performance on unseen data.

2.5. Model selection and training

The RFR and GBR models were selected for their ability to handle 
non-linear relationships and provide feature importance scores, 
enhancing interpretability [30–32]. These models assume that the re-
lationships between process parameters and output responses are 
non-linear and complex. RFR and GBR construct an ensemble of decision 
trees, each trained on a random subset of the data. The final prediction is 
the average of predictions from all trees, which reduces overfitting and 
enhances generalization [33]. Hyperparameter tuning was conducted to 
optimize model performance. Key hyperparameters, such as the number 
of trees (n_estimators), maximum tree depth (max_depth), and minimum 

Table 1 
Chemical composition of the investigated A356 aluminum alloy.

Elements Si Fe Cu Mn Mg Zn Cr Ti Ni Al
Weight % 6.23 0.067 0.004 0.0029 0.337 0.0007 0.0005 0.136 0.0003 93.1
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samples per leaf (min_samples_leaf), were explored using Grid Search 
with cross-validation. PFR and GBR models were processed via Jupyter 
notebook through Anaconda software [34].

2.6. Model evaluation metrics

To assess RFR and GBR models performance, two metrics were 
employed. (i) mean absolute error (MAE), which measures the average 
magnitude of prediction errors, providing a straightforward interpreta-
tion of accuracy. (ii) root mean square error (RMSE), which is similar to 
MAE but penalizes larger errors more, making it useful for under-
standing error distribution. By comparing MAE and RMSE for each 
output variable, a comprehensive understanding of the model’s pre-
dictive accuracy is carried out.

3. Results and discussion

3.1. Experimental values

Table 3 shows the input parameters of RS, FR, and PH of the 27 ex-
periments and the corresponding output parameters (ha, t, Ra, and T). 
Clearly, as RS increases from 2000 to 4000 rpm, there is a general in-
crease in ha and t. This implies that higher rotational speeds promote 
more material deformation, leading to taller and thicker bushes. T also 
tends to increase significantly with higher RS, especially noticeable 
when RS increases from 3000 to 4000 rpm. This suggests that higher 
rotational speeds generate more heat due to increased friction. Ra 
generally decreases with increasing RS, especially at lower feed rates 
and lower preheat temperatures. This means higher speeds tend to 
create smoother surfaces, potentially due to the more continuous ma-
terial flow at higher temperatures.

Additionally, it is clear that ha decreases as the feed rate increases. 
For example, at 2000 rpm and 100 ◦C, ha decreases from 6.80 mm at 
40 mm/min to 4.90 mm at 80 mm/min. This indicates that higher feed 
rates may reduce the contact time for material deformation, resulting in 
shorter bushes. t also shows a slight tendency to decrease with increased 
FR, though this effect is less pronounced than for ha. Ra generally in-
creases with higher feed rates. For instance, at 2000 rpm and 100 ◦C, Ra 
increases from 5.872 µm at 40 mm/min to 7.564 µm at 80 mm/min. 

Fig. 1. Schematic drawing of (a) friction drilling tool, (b) fixing of the workpiece, (c) tool penetration through the workpiece, and (d) cross-section of the 
formed bushing.

Table 2 
Values of friction drilling parameters.

Pre-heating temperature, ◦C Rotational speed, rpm Feed rate, mm/min

100, 150, and 200 2000, 3000, and 4000 40, 60, and 80
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This leads us to conclude that higher feed rates lead to an increased 
cutting action, creating a rougher surface, which agrees with the results 
reported in the literature [10].

Regarding PH, ha and t generally increase with higher preheat 
temperatures. Heating the A356 Al-alloy softens it [17], allowing more 
deformation and extrusion around the drilled hole (at the tool/work-
piece interface. T also increases with higher PH, as expected, since 
starting with a higher material temperature adds to the heat generated 
by friction. Ra tends to increase with PH, especially at lower rotational 
speeds. Preheating causes the material to become softer and more prone 
to roughness variations on the surface.

3.2. Correlation between input parameters and output responses

3.2.1. Heat maps
The heatmaps provide a comprehensive overview of the interactions 

between friction drilling parameters and output responses [20,35]. 
Fig. 2 depicts Pearson correlation heatmap between the input parame-
ters (RS, FR, and PH) and the output responses (ha, t, T, and Ra). The 
correlation coefficients range from − 1 to 1, where values closer to 1 
indicate a strong positive relationship, values closer to − 1 denote a 
strong negative relationship, and values near 0 suggest no significant 
linear correlation.

The analysis reveals several key patterns. A strong positive correla-
tion exists between ha and PH, as well as between T and PH. This sug-
gests that higher preheating temperatures lead to increased material 
deformation and induced temperature at the tool/workpiece interface, 
directly influencing the height and heat generation during the friction 
drilling process. Additionally, there is a moderate positive correlation 
between RS and both ha and T, indicating the significant role of rota-
tional speed in influencing the thermal and dimensional characteristics 
of the formed bushing. In contrast, FR demonstrates relatively weaker 
correlations with the output responses, highlighting that variations in 
FR have less influence on the outputs.

In contrast, negative correlations are observed between RS and Ra, 
signifying that increased rotational speeds tend to improve surface fin-
ish, and thus reducing roughness. Similarly, Ra exhibits weaker positive 

correlations with T, suggesting that excessive heat slightly degrades the 
surface quality. There exists a moderate correlation between t and PH, 
RS, and T, reflecting the complex thermal and mechanical interactions 
during material deformation.

3.2.2. Main effects plot for ha, t, Ra, and T
Fig. 3 depicts the main effects plots for ha, t, Ra, and T (outputs) 

corresponding to variations in RS, FR, and PH (inputs). A main effects 
plot shows the relationship between each input variable and the output 
while averaging the effect of other variables. This helps to understand 
the individual impact of each input on the output without interactions 
with other variables. It is apparent that both ha and T show similar 
behaviors (Fig. 3.a and d). Clearly, both ha and T are increased with 
increases in RS and PH, but decrease with increasing FR, which could be 
attributed to enhanced plastic deformation resulting from increased 
dislocation mobility [36] under severe drilling conditions induced by 
high rotaional speed and preheating [17]. On the other hand, t and Ra 
decrease with increases in FR and PH, whereas they increase with RS 
increase (Fig. 3.b and c). The present results agree with the literature 
[37,38], displaying that rising the tool rotational speed, improves 
bushing heights but decreases bushing thicknesses, and vice versa. On 
the other hand, increased FR results in decreasing bush heights but in-
creases the thickness. Additionally, the increase in PH enhances the 
induced temperature during friction drilling, which improves height and 
thickness of the formed bushes, but it deteriorates the quality of the 
surface (surface roughness values are increased).

3.3. Comparing experimental and predicted values of ha, t, Ra, and T

Fig. 4 depicts a comparison of the actual and predicted values for ha, 
t, Ra, and T corresponding to variations in RS, FR, and PH of the 27 
experiments through RFR and GBR models. Clearly, the RFR model 
demonstrates a generally good fit with the experimental data for ha. 
However, there are noticeable deviations, particularly at higher bush 
height values. These discrepancies suggest that while RFR captures the 
overall trend well, it may experience some overfitting or underfitting in 
certain regions. In contrast, the GBR model shows a closer alignment 
with the experimental data, particularly at the higher bush height 
values, indicating that GBR may be better at capturing the variations in 
the larger bush heights. However, GBR does show some minor de-
viations at lower bush heights, suggesting that it may be more sensitive 
to smaller variations in the data.

In the case of t, the RFR model tends to over-predict at lower 

Table 3 
Friction drilling parameters and corresponding output responses.

Input parameter Output response

RS, rpm FR, mm/min PH, ◦C ha, mm t, mm T, ◦C Ra, µm

2000 40 100 6.80 1.655 166.5 5.872
2000 40 150 7.50 1.760 200.7 6.09
2000 40 200 7.70 1.970 212.1 6.104
2000 60 100 5.40 1.600 154.4 6.352
2000 60 150 5.60 1.835 195.9 6.68
2000 60 200 6.10 1.930 205.8 7.122
2000 80 100 4.90 1.770 154.4 7.564
2000 80 150 5.00 2.040 185.7 7.886
2000 80 200 5.20 2.240 202 8.915
3000 40 100 8.20 1.740 189.7 3.79
3000 40 150 8.50 1.845 214 4.092
3000 40 200 8.70 1.815 267.4 4.223
3000 60 100 7.10 1.645 175.4 4.534
3000 60 150 7.30 1.690 212.2 4.85
3000 60 200 7.60 1.700 249.8 4.986
3000 80 100 6.80 1.695 171.9 5.157
3000 80 150 6.20 1.720 209.6 5.25
3000 80 200 5.90 1.725 218.8 5.686
4000 40 100 8.90 1.550 224.7 1.846
4000 40 150 9.20 1.655 276.5 1.992
4000 40 200 9.40 1.730 366.8 2.11
4000 60 100 8.20 1.625 200.9 2.362
4000 60 150 8.30 1.710 250.4 2.673
4000 60 200 7.90 1.885 334.7 2.984
4000 80 100 8.00 1.705 196.9 3.017
4000 80 150 7.80 1.715 214.3 3.278
4000 80 200 9.00 1.800 280 3.513

Fig. 2. Pearson correlation heatmap showing the linear relationships between 
input parameters and output responses.
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Fig. 3. Main effect plots for: (a) bush height, (b) bush thickness, (c) surface roughness, and (d) induced temperature during friction drilling processes at different 
values of RS, FR, and PH.
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Fig. 4. Comparison of (1) RFR and (2) GBR results for the predicted and experimental values of: (a) bush height, (b) bush thickness, (c) surface roughness, and (d) 
induced temperature.
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thickness values but provides relatively consistent predictions as the 
thickness increases. The RFR model’s predictions show fewer outliers 
when compared to GBR. Conversely, the GBR model exhibits some 
stronger outliers, particularly at the higher bush thickness values, sug-
gesting that GBR may under-predict the thickness in extreme cases. This 
indicates that GBR might struggle to capture the full range of bush 
thickness variations, particularly at the extremes conditions.

Regarding Ra, the RFR model performs reasonably well, but it tends 
to predict slightly higher roughness values, especially at lower Ra 
values. The predictions from RFR are generally scattered around the line 
of perfect fit, without exhibiting any clear bias. On the other hand, the 
GBR model appears to be more accurate in predicting surface roughness, 
showing fewer extreme outliers compared to RFR. However, GBR does 
struggle to predict values in the mid-range of Ra, where it experiences 
some small deviations.

Finally, in terms of T, the RFR model generally provides a good ac-
curacy, although it slightly under-predicts the induced temperature at 
higher values. This under-prediction at extreme temperatures suggests 
that RFR may not be fully capturing the relationship in the temperature 
extremes. In contrast, the GBR model offers better predictions for high- 
temperature values, with less under-prediction than RFR. However, GBR 
tends to over-predict temperatures in the lower range, particularly in the 
intermediate temperature values. This highlights GBR’s sensitivity to 
temperature extremes but also its tendency to overestimate tempera-
tures at lower values. In the following section, we will evaluate the 
model accuracy through assessing its performance and metrics.

3.4. RFR and GBR models performance and metrics

Fig. 5 displays the evolution of the actual and predicted values of the 
test data for ha, t, Ra, and T (outputs) corresponding to variations in RS, 
FR, and PH (inputs) via the RFR and GBR models. The actual values 
display similar trends to the predicted outputs. However, there exists 
small variations between the actual values and the corresponding pre-
dicted ones, which arise for several reasons related to the model’s 
structure, the nature of the data, and the complexity of the relationships 
being modelled [39]. Furthermore, small datasets or limited variability 
in the data can limit the model’s ability to generalize. In our case, 
working with only 27 experiments, this is a relatively small dataset for 
RFR and GBR models, which thrives on large datasets to build diverse 
trees.

The GBR model depicts more accurate behavior than the RFR algo-
rithm regarding ha, t, and Ra, whereas it has a similar accuracy for T. 
Although Random Forests generally resist overfitting, they can still 
overfit if too many trees or overly deep trees are used, especially with a 
small dataset. Overfitting can make the model too specialized to the 
training data, leading to less accurate predictions on new data. 
Conversely, if the Random Forest has too few trees or shallow trees, it 
might underfit, meaning it captures only basic patterns and misses finer 
details [35]. Therefore, the RFR exhibited lower discrepancies between 
actual and predicted values, which could be assessed through the values 
of MAE and RMSE.

The FRF and GBR models achieved varying levels of accuracy across 
the four output variables. Table 4 summarizes the MAE and RMSE values 
for each output, demonstrating that the RFR model is particularly 
effective at predicting observing temperature, while predictions for bush 
dimensions and surface roughness showed slightly higher errors than 
using of the GBR model. This discrepancy may reflect underlying com-
plexities in the process or data limitations for those specific outcomes. It 
could be concluded that GBR model is more effective in predicting 
bushing dimensions and surface roughness than RFR, as it exhibited 
reduced error difference for ha, t, and Ra, since R2 was greater for the 
GBR model in predicting their values.

3.5. Feature importance and interpretation of results

The feature importance analysis from the RFR and GBR models re-
veals that FR demonstrates weaker correlations with the output vari-
ables, especially when compared to RS and PH. Its effect on ha and T is 
less pronounced, but it has a noticeable negative impact on both ha and 
T as the feed rate increases. The FR has a more significant influence on t), 
where an increase in FR reduces the thickness, likely due to the more 
rapid material movement and less time for deformation at higher feed 
rates, in agreement with the literature [10].

RS plays a critical role in determining several output variables, 
particularly ha and T. This is consistent with the observations that higher 
rotational speeds lead to greater material deformation, increased heat 
generation, and consequently higher bush height and temperature, in 
agreement with the literature [40,41]. Additionally, RS has a moderate 
influence on Ra, with higher speeds resulting in smoother surfaces.

PH shows a strong positive influence on both ha and T, suggesting 
that preheating the workpiece leads to better material flow and higher 
thermal generation. This is in line with the findings that an increased PH 
results in higher bush height and temperature but deteriorates surface 
quality, causing an increase in surface roughness Ra [17]. PH has a 
relatively moderate negative effect on t, likely due to the complex 
thermal and mechanical interactions during material deformation.

For achieving smoother surface finishes, adjustments to FR are 
essential, with lower values generally producing smoother surfaces. RS 
can also be adjusted to control heat generation, preventing thermal 
damage and maintaining surface integrity. Temperature management 
can be optimized through careful control of RS, balancing heat pro-
duction to facilitate material flow without compromising material 
quality. Bush height and thickness can be fine-tuned by adjusting FR and 
PH, allowing for precise control over bushing dimensions based on 
application needs.

By focusing on the most influential parameters, this approach en-
ables a data-driven method for friction drilling optimization, reducing 
the need for trial-and-error and ensuring high process efficiency. This 
level of control is especially beneficial for industries such as aerospace 
and automotive manufacturing, where specific performance standards 
are essential.

3.6. Limitations and future work

Although the RFR and GBR models demonstrate promising predic-
tive accuracy, certain limitations should be acknowledged. First, the 
dataset size is small, which may limit generalizability. Increasing the 
dataset and incorporating real-time sensor data could improve model 
robustness. Additionally, exploring other machine learning models, such 
as Gradient Boosting or Neural Networks, may yield improved accuracy 
and insights. Future studies could also investigate additional friction 
drilling parameters, such as tool geometry or lubrication conditions, to 
refine predictions further.

4. Conclusions

This study investigated the usage of RFR and GBR models for pre-
dicting key friction drilling outcomes in A356 aluminum alloy, specif-
ically bush height (ha), bush thickness (t), surface roughness (Ra), and 
induced temperature at the workpiece/tool interface (T). Through a 
series of 27 friction drilling experiments, the effects of rotational speed 
(RS), feed rate (FR), and preheat temperature (PH) on these outputs 
were analyzed and modeled. By modelling the relationships between 
process parameters and drilling outcomes, this approach facilitates data- 
driven optimization in manufacturing. This research contributes to the 
growing body of literature on machine learning in manufacturing and 
demonstrates a practical application of predictive modelling for friction 
drilling. The following conclusions were drawn out:

1. Experimentally, it was found that increases in bush height with 
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Fig. 5. Actual and predicted trends of the tested data for: (a) bush height, (b) bush thickness, (c) surface roughness, and (d) induced temperature using: (1) Random 
Forest Regression, and (2) Gradient Boosting Regressor model.
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rising the tool rotational speed and preheating temperature. The bush 
thickness increased with increasing the feed rate and preheating tem-
perature. However, surface roughness was deteriorated with increasing 
the feed rate and preheating temperature.

2. The main effects plots displayed that the feed rate is the most 
critical parameter influencing surface roughness and bush height, while 
rotational speed primarily impacts the temperature generated during 
drilling. Preheat temperature was also significant, particularly in 
enhancing bush thickness and facilitating material flow.

3. The GBR model outperforms the RFR model in predicting the 
bushing dimensions (ha and t) and surface roughness (Ra).

4. The RFR model, while effective at predicting the induced tem-
perature (T), showed higher errors for bush height and surface rough-
ness. This discrepancy may be attributed to overfitting or underfitting in 
regions with extreme values.

Despite the promising results of the present study, limitations remain 
due to the small dataset size, which may restrict the model’s general-
izability. Future studies should focus on expanding the dataset and 
incorporating real-time sensor data for dynamic modeling. Additionally, 
exploring alternative models, such as Bayesian Ridge regression and 
Neural Networks, may further enhance predictive accuracy and reveal 
deeper insights into the interactions between drilling parameters. 
Overall, this study highlights the value of machine learning in friction 
drilling optimization, underscoring its potential to improve friction 
drilling parameters and the quality of the produced bushings for specific 
manufacturing applications.
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